Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles.

نویسندگان

  • Jessica Middlemis Maher
  • Earl E Werner
  • Robert J Denver
چکیده

Amphibian tadpoles display extensive anti-predator phenotypic plasticity, reducing locomotory activity and, with chronic predator exposure, developing relatively smaller trunks and larger tails. In many vertebrates, predator exposure alters activity of the neuroendocrine stress axis. We investigated predator-induced effects on stress hormone production and the mechanistic link to anti-predator defences in Rana sylvatica tadpoles. Whole-body corticosterone (CORT) content was positively correlated with predator biomass in natural ponds. Exposure to caged predators in mesocosms caused a reduction in CORT by 4 hours, but increased CORT after 4 days. Tadpoles chronically exposed to exogenous CORT developed larger tails relative to their trunks, matching morphological changes induced by predator chemical cue; this predator effect was blocked by the corticosteroid biosynthesis inhibitor metyrapone. Tadpole tail explants treated in vitro with CORT increased tissue weight, suggesting that CORT acts directly on the tail. Short-term treatment of tadpoles with CORT increased predation mortality, likely due to increased locomotory activity. However, long-term CORT treatment enhanced survivorship, likely due to induced morphology. Our findings support the hypothesis that tadpole physiological and behavioural/morphological responses to predation are causally interrelated. Tadpoles initially suppress CORT and behaviour to avoid capture, but increase CORT with longer exposure, inducing adaptive phenotypic changes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predator-induced phenotypic plasticity in tadpoles: extension or innovation?

Phenotypic plasticity, the ability of a trait to change as a function of the environment, is central to many ideas in evolutionary biology. A special case of phenotypic plasticity observed in many organisms is mediated by their natural predators. Here, we used a predator-prey system of dragonfly larvae and tadpoles to determine if predator-mediated phenotypic plasticity provides a novel way of ...

متن کامل

Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis.

Environmentally induced phenotypic plasticity allows developing organisms to respond adaptively to changes in their habitat. Desert amphibians have evolved traits which allow successful development in unpredictable environments. Tadpoles of these species can accelerate metamorphosis as their pond dries, thus escaping mortality in the larval habitat. This developmental response can be replicated...

متن کامل

Reciprocal phenotypic plasticity in a predator-prey interaction between larval amphibians.

In biological interactions, phenotypic change in interacting organisms induced by their interaction partners causes a substantial shift in some environmental factor of the partners, which may subsequently change their phenotype in response to that modified environmental factor. Few examples of such arms-race-like plastic responses, known as reciprocal phenotypic plasticity, have been identified...

متن کامل

Environmental stress and the costs of whole-organism phenotypic plasticity in tadpoles.

Costs of phenotypic plasticity are important for the evolution of plasticity because they prevent organisms from shaping themselves at will to match heterogeneous environments. These costs occur when plastic genotypes have relatively low fitness regardless of the trait value expressed. We report two experiments in which we measured selection on predator-induced plasticity in the behaviour and e...

متن کامل

Swimming with Predators and Pesticides: How Environmental Stressors Affect the Thermal Physiology of Tadpoles

To forecast biological responses to changing environments, we need to understand how a species's physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 280 1758  شماره 

صفحات  -

تاریخ انتشار 2013